F_JustWei's Studio.

死锁

字数统计: 2k阅读时长: 6 min
2021/04/30 Share

死锁

产生死锁的四个必要条件

互斥

进程要求对所分配的资源(如打印机)进行排他性控制,即在一段时间内某资源仅为一个进程所占有。此时若有其他进程请求该资源,则请求进程只能等待。

不可剥夺

进程所获得的资源在未使用完毕之前,不能被其他进程强行夺走,即只能由获得该资源的进程自己来释放(只能是主动释放)。

请求与保持

进程已经保持了至少一个资源,但又提出了新的资源请求,而该资源已被其他进程占有,此时请求进程被阻塞,但对自己已获得的资源保持不放。

环路等待

有两个或者两个以上的进程组成一条环路,该环路中的每个进程都在等待下一个进程所占有的资源。

死锁的处理方法

  • 鸵鸟策略:忽略死锁。
  • 预防死锁:通过设置某些限制条件,去破坏产生死锁的四个必要条件中的一个或几个条件,来防止死锁的发生。
  • 避免死锁:在资源的动态分配过程中,用某种方法去防止系统进入不安全状态,从而避免死锁的发生。
  • 检测死锁:允许系统在运行过程中发生死锁,但可设置检测机构及时检测死锁的发生,并采取适当措施加以清除。
  • 解除死锁:当检测出死锁后,便采取适当措施将进程从死锁状态中解脱出来。

鸵鸟策略

把头埋在沙子里,假装根本没发生问题。

因为解决死锁问题的代价很高,因此鸵鸟策略这种不采取任务措施的方案会获得更高的性能。当发生死锁时不会对用户造成多大影响,或发生死锁的概率很低,可以采用鸵鸟策略。大多数操作系统,包括 Unix,Linux 和 Windows 处理死锁问题的办法仅仅是忽略它。

预防死锁

破坏互斥条件

互斥条件不能被破坏,否则会造成结果的不可再现性。

破坏不可剥夺条件

允许对资源实行抢夺。

破坏请求与保持条件

所有进程在开始执行前请求所需要的全部资源。

破坏环路等待条件

将系统中的所有资源统一编号,进程可在任何时刻提出资源申请,但所有申请必须按照资源的编号顺序(升序)提出。

避免死锁

有序资源分配法

这种算法资源按某种规则系统中的所有资源统一编号(例如打印机为1、磁带机为2、磁盘为3),申请时必须以上升的次序。

系统要求申请进程:

  1. 对它所必须使用的而且属于同一类的所有资源,必须一次申请完。
  2. 在申请不同类资源时,必须按各类设备的编号依次申请。例如:进程PA,使用资源的顺序是R1,R2。 进程PB,使用资源的顺序是R2,R1。若采用动态分配有可能形成环路条件,造成死锁。
    采用有序资源分配法:R1的编号为1,R2的编号为2
    PA:申请次序应是:R1,R2
    PB:申请次序应是:R1,R2
    这样就破坏了环路条件,避免了死锁的发生。

银行家算法


img

上图中有五个进程,四个资源。左边的图表示已经分配的资源,右边的图表示还需要分配的资源。最右边的 E、P 以及 A 分别表示:总资源、已分配资源以及可用资源,注意这三个为向量,而不是具体数值,例如 A=(1020),表示 4 个资源分别还剩下 1/0/2/0。

检查一个状态是否安全的算法如下:

  • 查找右边的矩阵是否存在一行小于等于向量 A。如果不存在这样的行,那么系统将会发生死锁,状态是不安全的。
  • 假若找到这样一行,将该进程标记为终止,并将其已分配资源加到 A 中。
  • 重复以上两步,直到所有进程都标记为终止,则状态时安全的。

如果一个状态不是安全的,需要拒绝进入这个状态。

检测死锁

一般来说,由于操作系统有并发,共享、虚拟、不确定的特点,通过预防和避免的手段达到排除死锁的目的是很困难的。这需要较大的系统开销,而且不能充分利用资源。为此,一种简便的方法是系统为进程分配资源时,不采取任何限制性措施,但是提供了检测和解脱死锁的手段:能发现死锁并从死锁状态中恢复出来。因此,在实际的操作系统中往往采用死锁的检测与恢复方法来排除死锁。

每种类型一个资源的死锁检测:

img

上图为资源分配图,其中方框表示资源,圆圈表示进程。资源指向进程表示该资源已经分配给该进程,进程指向资源表示进程请求获取该资源。

图 a 可以抽取出环,如图 b,它满足了环路等待条件,因此会发生死锁。

每种类型一个资源的死锁检测算法是通过检测有向图是否存在环来实现,从一个节点出发进行深度优先搜索,对访问过的节点进行标记,如果访问了已经标记的节点,就表示有向图存在环,也就是检测到死锁的发生。

每种类型多个资源的死锁检测:

image-20210430202513456

上图中,有三个进程四个资源,每个数据代表的含义如下:

  • E 向量:资源总量
  • A 向量:资源剩余量
  • C 矩阵:每个进程所拥有的资源数量,每一行都代表一个进程拥有资源的数量
  • R 矩阵:每个进程请求的资源数量

进程 P1 和 P2 所请求的资源都得不到满足,只有进程 P3 可以,让 P3 执行,之后释放 P3 拥有的资源,此时 A = (2 2 2 0)。P2 可以执行,执行后释放 P2 拥有的资源,A = (4 2 2 1) 。P1 也可以执行。所有进程都可以顺利执行,没有死锁。

算法总结如下:

每个进程最开始时都不被标记,执行过程有可能被标记。当算法结束时,任何没有被标记的进程都是死锁进程。

  1. 寻找一个没有标记的进程 Pi,它所请求的资源小于等于 A。
  2. 如果找到了这样一个进程,那么将 C 矩阵的第 i 行向量加到 A 中,标记该进程,并转回 1。
  3. 如果没有这样一个进程,算法终止。

解除死锁

一旦检测出死锁,就应立即釆取相应的措施,以解除死锁。
死锁解除的主要方法有:

  1. 资源剥夺法:挂起某些死锁进程,并抢占它的资源,将这些资源分配给其他的死锁进程。但应防止被挂起的进程长时间得不到资源,而处于资源匮乏的状态。
  2. 撤销进程法:强制撤销部分、甚至全部死锁进程并剥夺这些进程的资源。撤销的原则可以按进程优先级和撤销进程代价的高低进行。
  3. 进程回退法:让一个或多个进程回退到足以回避死锁的地步,进程回退时自愿释放资源而不是被剥夺。要求系统保持进程的历史信息,设置还原点。
CATALOG
  1. 1. 死锁
    1. 1.1. 产生死锁的四个必要条件
      1. 1.1.1. 互斥
      2. 1.1.2. 不可剥夺
      3. 1.1.3. 请求与保持
      4. 1.1.4. 环路等待
    2. 1.2. 死锁的处理方法
      1. 1.2.1. 鸵鸟策略
      2. 1.2.2. 预防死锁
        1. 1.2.2.1. 破坏互斥条件
        2. 1.2.2.2. 破坏不可剥夺条件
        3. 1.2.2.3. 破坏请求与保持条件
        4. 1.2.2.4. 破坏环路等待条件
      3. 1.2.3. 避免死锁
        1. 1.2.3.1. 有序资源分配法
        2. 1.2.3.2. 银行家算法
      4. 1.2.4. 检测死锁
      5. 1.2.5. 解除死锁